Convertir le modèle .pt en onnx
La conversion d’un modèle du format .pt de PyTorch au format ONNX implique quelques étapes, nécessitant généralement de charger le modèle PyTorch puis d’utiliser une fonction ou une méthode pour l’exporter vers ONNX.
Installez la bibliothèque Ultralytics YOLO
Assurez-vous que la bibliothèque Ultralytics YOLO est installée dans votre environnement Python. Cette bibliothèque fournit les outils et méthodes nécessaires pour travailler avec les modèles YOLO. Vous pouvez l’installer en utilisant pip si elle n’est pas déjà installée :
“`
pip install ultralytics
“`
Importer la classe YOLO
Commencez votre script en important la classe YOLO du paquet ultralytics. Cette classe est conçue pour gérer les modèles YOLO, y compris leur chargement et leur exportation.
“`
from ultralytics import YOLO
“`
Charger votre modèle PyTorch personnalisé
Utilisez la classe YOLO pour charger votre modèle entraîné personnalisé. Vous devez spécifier le chemin d’accès à votre fichier de modèle .pt. Ce fichier doit contenir les poids entraînés et l’architecture du modèle. L’exemple utilise “best.pt”, en supposant qu’il s’agit du nom de votre fichier de modèle.
“`
model = YOLO(‘best.pt’) # load a custom trained model
“`
Exporter le modèle au format ONNX
Une fois le modèle chargé, vous pouvez l’exporter au format ONNX en utilisant la méthode d’exportation. Spécifiez le format ‘onnx’ dans l’appel de la méthode. Cela créera un fichier ONNX dans le répertoire de travail actuel ou dans le chemin spécifié (si vous en fournissez un).
“`
model.export(format=’onnx’)
“`
Vérifier le fichier modèle ONNX
Après avoir exécuté le script, vous devriez trouver un fichier de modèle ONNX dans votre répertoire de travail. Le nom du fichier sera généralement dérivé du nom de votre fichier .pt original, mais avec une extension .onnx.