Catégorie dans Informatique

VisionEye Mapping: Cartographie d’objets précis avec Ultralytics

VisionEye Mapping: Cartographie d’objets précis avec Ultralytics

VisionEye Mapping est une fonctionnalité révolutionnaire de la bibliothèque de détection d’objets Ultralytics . Elle permet aux ordinateurs d’identifier et de localiser des objets précis dans une scène, imitant la précision d’observation de l’œil humain. Cette technologie ouvre de nouvelles possibilités pour une variété d’applications, de la surveillance et de la sécurité à la robotique et à l’industrie automobile.

Fonctionnement de VisionEye Mapping

VisionEye Mapping s’appuie sur deux technologies puissantes:

  • YOLOv8 ou Yolov9: Détecte et localise des objets en temps réel avec une grande précision.
  • VisionEye: Permet de se concentrer sur des objets spécifiques dans une scène, en ignorant les détails non pertinents.

En combinant ces technologies, VisionEye Mapping crée une “carte” des objets pertinents dans une image ou une vidéo. Cette carte peut ensuite être utilisée pour diverses tâches, telles que:

  • Suivi d’objets: Surveiller le mouvement d’objets spécifiques dans une scène.
  • Comptage d’objets: Dénombrer le nombre d’objets d’un type particulier dans une zone donnée.
  • Analyse de scène: Identifier et comprendre les différents éléments d’une scène.

Avantages de VisionEye Mapping

  • Précision accrue: VisionEye permet une identification et une localisation plus précises des objets que les méthodes traditionnelles.
  • Efficacité accrue: En se concentrant sur les objets pertinents, VisionEye peut réduire le temps de traitement et améliorer l’efficacité.
  • Flexibilité: VisionEye peut être utilisé avec une grande variété de caméras et de capteurs.

Applications de VisionEye Mapping

VisionEye Mapping a le potentiel de révolutionner un large éventail d’applications, notamment:

  • Surveillance et sécurité: Suivi des personnes et des véhicules dans les zones publiques, détection d’intrusion et surveillance des foules.
  • Robotique: Guidage des robots dans des environnements complexes, localisation et manipulation d’objets.
  • Industrie automobile: Détection d’obstacles pour les véhicules autonomes, inspection des pièces automobiles.
  • Agriculture: Surveillance des cultures et du bétail, tri des produits agricoles.
  • Domotique: Contrôle des appareils intelligents par des gestes et des mouvements.

Conclusion

VisionEye Mapping est une technologie prometteuse avec le potentiel de transformer la façon dont nous interagissons avec le monde qui nous entoure. Sa précision, son efficacité et sa flexibilité en font un outil précieux pour une variété d’applications. Alors que la technologie continue de se développer, nous pouvons nous attendre à voir VisionEye Mapping jouer un rôle de plus en plus important dans nos vies.

Ressources supplémentaires:

import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import colors, Annotator

model = YOLO("yolov9e.pt") # on peut uriliser yolov8 ou yolov9
names = model.model.names
cap = cv2.VideoCapture(0)
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter('visioneye-pinpoint1.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))

center_point = (-10, h)

while True:
    ret, im0 = cap.read()
   

    results = model.predict(im0)
    boxes = results[0].boxes.xyxy.cpu()
    clss = results[0].boxes.cls.cpu().tolist()

    annotator = Annotator(im0, line_width=2)

    for box, cls in zip(boxes, clss):
        annotator.box_label(box, label=names[int(cls)], color=colors(int(cls)))
        annotator.visioneye(box, center_point)

    out.write(im0)
    cv2.imwrite("vision.png", im0)
    cv2.imshow("visioneye-pinpoint", im0)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

YOLOv9: Une avancée majeure dans la détection d’objets en temps réel

YOLOv9: Une avancée majeure dans la détection d’objets en temps réel

YOLOv9 est un nouveau modèle de détection d’objets en temps réel qui a été récemment publié et qui s’annonce comme une avancée majeure dans ce domaine. Il surpasse ses prédécesseurs en termes de précision, d’efficacité et de flexibilité, ce qui en fait un outil puissant pour une large gamme d’applications.

Ce modèle introduit des concepts innovants tels que l’Information de Gradient Programmable (PGI) et le Réseau d’Aggrégation de Couches Efficace et Généralisé (GELAN) pour améliorer l’exactitude et l’efficacité de la détection. Le PGI s’attaque au défi de la perte d’informations dans les réseaux profonds en préservant les caractéristiques clés et en garantissant une génération fiable de gradients pour des résultats d’entraînement optimaux. D’autre part, le GELAN propose une architecture de réseau légère qui optimise l’utilisation des paramètres et l’efficacité computationnelle, rendant YOLOv9 adaptable à une large gamme d’applications​ https://docs.ultralytics.com/fr/models/yolov9/#introduction-to-yolov9

YOLOv9 se distingue par la division de sa tête en une branche principale et une branche auxiliaire à plusieurs niveaux, aidant à capturer et à conserver l’information de gradient pendant la phase d’entraînement. Cette conception permet à la branche auxiliaire de soutenir efficacement la branche principale en préservant l’information de gradient essentielle​​. La série du modèle comprend des variantes telles que YOLOv9-s (petit), YOLOv9-m (moyen), YOLOv9-c (compact) et YOLOv9-e (étendu), répondant à divers besoins allant de l’application légère à l’application intensive en performance

Le modèle a montré une performance supérieure sur le jeu de données COCO, équilibrant l’efficacité et la précision à travers ses variantes. La conception de YOLOv9 aide à réduire les paramètres et les besoins computationnels tout en améliorant l’exactitude, maintenant l’héritage de la série de fournir des modèles de détection d’objets performants​​. Plus précisément, YOLOv9 résout le problème de goulot d’étranglement de l’information dans les réseaux neuronaux profonds, où l’empilement séquentiel peut entraîner une perte d’informations importantes, et aborde les inefficacités liées à l’utilisation des paramètres à travers l’architecture GELAN innovante​​.

Comparativement, YOLOv9 offre des avancées significatives dans la conception des modèles, mettant l’accent sur une efficacité accrue sans compromettre la précision, essentielle pour les tâches de détection d’objets en temps réel. Il établit de nouveaux repères en matière de métriques de performance tout en soulignant également l’importance de l’efficacité computationnelle, s’établissant comme un développement clé dans le domaine de la vision par ordinateur​

Points forts de YOLOv9:

  • Précision de pointe: YOLOv9 atteint des résultats de pointe en matière de précision sur des benchmarks standard comme COCO et PASCAL VOC. Il est capable de détecter une large gamme d’objets avec une grande précision, même dans des images complexes et défavorables.
  • Efficacité accrue: YOLOv9 est plus efficace que les modèles précédents, ce qui lui permet de fonctionner plus rapidement sur des appareils moins puissants. Cela le rend idéal pour les applications embarquées et mobiles où la vitesse est essentielle.
  • Flexibilité programmable: YOLOv9 offre une flexibilité unique grâce à l’utilisation de gradients programmables. Cela permet aux utilisateurs de personnaliser le processus d’apprentissage en fonction de leurs besoins spécifiques, ce qui peut améliorer encore la précision et l’efficacité pour des tâches spécifiques.

Applications de YOLOv9:

YOLOv9 peut être utilisé pour une large gamme d’applications de détection d’objets en temps réel, notamment :

  • Surveillance: YOLOv9 peut être utilisé pour surveiller les personnes et les véhicules dans des environnements publics ou privés.
  • Robotique: YOLOv9 peut aider les robots à naviguer dans leur environnement et à interagir avec des objets.
  • Inspection industrielle: YOLOv9 peut être utilisé pour inspecter des produits à la recherche de défauts.
  • Véhicules autonomes: YOLOv9 peut aider les véhicules autonomes à détecter d’autres véhicules, des piétons et des obstacles sur la route.

Conclusion:

YOLOv9 est une avancée majeure dans la détection d’objets en temps réel. Sa précision, son efficacité et sa flexibilité en font un outil puissant pour une large gamme d’applications. Il est probable que YOLOv9 aura un impact significatif sur la façon dont nous utilisons la technologie de détection d’objets dans les années à venir.

Ressources supplémentaires:

Manipulation avancée d’images avec OpenCV

Transformation géométrique d’images

Les transformations géométriques jouent un rôle crucial dans le traitement d’images, permettant de modifier la perspective, la taille et l’orientation des images.

Redimensionnement

Le redimensionnement est une des transformations les plus courantes. OpenCV permet de redimensionner une image avec la fonction

cv2.resize()

.

 

 

import cv2

# Charger l'image
image = cv2.imread('chemin/vers/image.jpg')

# Redimensionner l'image
image_resized = cv2.resize(image, (nouvelle_largeur, nouvelle_hauteur))

cv2.imshow('Image redimensionnée', image_resized)
cv2.waitKey(0)
cv2.destroyAllWindows()

Rotation

La rotation d’une image à un certain angle se fait en utilisant la matrice de rotation obtenue avec

cv2.getRotationMatrix2D()

.

 

# Centre de rotation (le centre de l'image dans ce cas)
centre = (largeur / 2, hauteur / 2)

# Matrice de rotation
matrice_rotation = cv2.getRotationMatrix2D(centre, angle, echelle)

# Appliquer la rotation
image_rotated = cv2.warpAffine(image, matrice_rotation, (largeur, hauteur))

Exercice 1 : Appliquer une rotation

  1. Chargez une image.
  2. Appliquez une rotation de 45 degrés sans perte de contenu.
  3. Affichez l’image originale et l’image tournée.

Conversion de couleurs et gestion des canaux

OpenCV permet de convertir facilement les images d’un espace colorimétrique à un autre (par exemple, de BGR à RGB, HSV, etc.) avec la fonction

cv2.cvtColor()

.

Changement d’espace colorimétrique

 

# Convertir une image BGR en HSV
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

OpenCV permet de convertir facilement les images d’un espace colorimétrique à un autre, comme de BGR (Bleu, Vert, Rouge) à RGB, HSV (Teinte, Saturation, Valeur) ou à des images en niveaux de gris.

# Convertir une image BGR en RGB
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# Convertir une image BGR en HSV
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

# Convertir une image BGR en niveaux de gris
image_grise = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Séparation et fusion de canaux

Vous pouvez séparer une image en ses canaux de couleur individuels, puis les fusionner ou manipuler individuellement.

 

# Séparer les canaux
B, G, R = cv2.split(image)

# Fusionner les canaux
image_fusionnee = cv2.merge([B, G, R])

Exercice 2 : Manipulation des canaux

  1. Chargez une image en couleur.
  2. Séparez-la en ses canaux Rouge, Vert et Bleu.
  3. Créez une nouvelle image en échangeant deux canaux de l’image originale.
  4. Comparez l’image originale et l’image modifiée.

Application de masques et de filtres

Les masques et les filtres sont des outils puissants pour améliorer ou extraire des informations d’une image.

Application d’un filtre

Les filtres permettent de réaliser des opérations telles que le flou, l’accentuation ou la détection de bords.

 

# Appliquer un flou gaussien
image_floue = cv2.GaussianBlur(image, (5, 5), 0)

Utilisation de masques

Un masque permet d’appliquer une opération sur une partie spécifique de l’image.

 

# Créer un masque binaire
masque = cv2.inRange(image_hsv, borne_inf, borne_sup)

# Appliquer le masque
image_masquee = cv2.bitwise_and(image, image, mask=masque)

Exercice 3 : Filtrage par masque

  1. Chargez une image en couleur.
  2. Convertissez l’image en espace de couleur HSV.
  3. Créez un masque pour isoler une certaine gamme de couleurs.
  4. Appliquez ce masque pour extraire la partie de l’image contenant les couleurs ciblées.
  5. Affichez l’image originale et le résultat du masquage.

Ces techniques avancées de manipulation d’images ouvrent la porte à de nombreuses applications, de l’amélioration de la qualité d’image à la reconnaissance d’objets. En maîtrisant ces outils, vous serez bien équipé pour aborder des projets plus complexes en traitement d’images et en vision par ordinateur.

Introduction à OpenCV

Installation et configuration de l’environnement de développement

Pour commencer à travailler avec OpenCV, il faut d’abord l’installer et configurer l’environnement de développement. OpenCV est disponible pour Windows, Linux et macOS, et peut être intégré à de nombreux IDEs et langages de programmation, le plus courant étant Python.

Installation avec Python

  1. Assurez-vous d’avoir Python installé sur votre système. OpenCV requiert Python 2.7.X ou une version 3.4+.
  2. Installez OpenCV en utilisant pip, le gestionnaire de paquets Python, en exécutant la commande suivante dans votre terminal ou invite de commande :
    pip install opencv-python
  1. Pour les fonctionnalités supplémentaires d’OpenCV, installez
    opencv-python-headless

    avec :

    pip install opencv-python-headless

Vérification de l’installation

Pour vérifier que l’installation a réussi, ouvrez un interpréteur Python et essayez d’importer cv2 (le module OpenCV pour Python) :

import cv2
print(cv2.__version__)
 

Si aucune erreur n’apparaît et que vous voyez la version d’OpenCV, alors l’installation a été réussie.

Premiers pas avec le traitement d’images

OpenCV facilite le traitement d’images grâce à ses nombreuses fonctions intégrées. Voici quelques exemples et exercices pour commencer.

Exemple : Lire et afficher une image

import cv2

# Charger une image
image = cv2.imread('chemin/vers/votre/image.jpg')

# Afficher l'image dans une fenêtre
cv2.imshow('Titre de la fenêtre', image)
cv2.waitKey(0) # Attendre une touche pour fermer
cv2.destroyAllWindows()
 

Exercice 1 : Conversion en niveaux de gris

  1. Lisez une image à partir de votre disque.
  2. Convertissez cette image en niveaux de gris en utilisant la fonction
    cv2.cvtColor()

    avec l’argument

    cv2.COLOR_BGR2GRAY

    .

  3. Affichez l’image originale et l’image en niveaux de gris côte à côte.

Exercice 2 : Floutage d’une image

  1. Chargez une image.
  2. Appliquez un flou Gaussien en utilisant la fonction
    cv2.GaussianBlur()

    .

  3. Choisissez différents noyaux (par exemple, (5, 5), (10, 10)) et comparez les résultats.
  4. Affichez l’image originale et les images floutées pour voir l’effet du flou.

Ces exemples et exercices devraient vous donner un bon départ dans le monde fascinant du traitement d’images avec OpenCV. Continuez à expérimenter avec différentes fonctions et paramètres pour explorer davantage les capacités d’OpenCV.

OpenCV et de ses fonctionnalités

OpenCV, qui signifie “Open Source Computer Vision Library”, est une bibliothèque logicielle ouverte et gratuite destinée à la vision par ordinateur et au traitement d’images. Elle a été développée pour fournir une infrastructure commune pour les applications de vision par ordinateur et pour accélérer l’utilisation de la perception machine dans les produits commerciaux. Depuis sa première sortie en 2000, OpenCV a trouvé son chemin dans de nombreuses applications, allant de la sécurité interactive aux véhicules autonomes.

 

Les fonctionnalités d’OpenCV couvrent plusieurs domaines du traitement d’images et de la vision par ordinateur, notamment :

  1. Traitement d’images : opérations de base sur les images telles que le filtrage, la transformation, la manipulation de formes, etc.
  2. Vision par ordinateur : techniques de détection de caractéristiques, de correspondance de caractéristiques et de suivi d’objets.
  3. Reconnaissance faciale : détection, reconnaissance et suivi des visages.
  4. Machine Learning : algorithmes pour la classification, la régression et le clustering.
  5. Réalité augmentée : superposition d’images et de vidéos dans des scènes réelles.
  6. 3D : manipulation et affichage d’images 3D, y compris la stéréovision et la reconstruction de scènes.

Gestion des conteneurs Docker

Création et exécution de conteneurs

La création et l’exécution de conteneurs Docker impliquent l’utilisation de l’image Docker comme base et l’exécution d’une instance de cette image sous forme de conteneur. On utilise généralement la commande

docker run

pour créer et démarrer un conteneur.

Exemples

  • docker run hello-world

    : Exécute un conteneur simple pour tester l’installation de Docker.

  • docker run -d -p 80:80 nginx

    : Exécute un conteneur nginx en arrière-plan (

    -d

    ) et mappe le port 80 de l’hôte sur le port 80 du conteneur.

Exercices

  1. Exécuter un conteneur Docker en utilisant une image officielle, comme
    nginx

    ou

    redis

    , en mode interactif.

  2. Démarrer un conteneur Docker en arrière-plan et accéder à ses logs pour vérifier son bon fonctionnement.

Surveillance et gestion des conteneurs en cours d’exécution

La surveillance et la gestion des conteneurs Docker comprennent le suivi de l’état, l’utilisation des ressources, les logs, et la gestion du cycle de vie des conteneurs. On utilise des commandes comme

docker ps

,

docker stats

, et

docker logs

pour ces tâches.

Exemples

  • docker ps

    : Affiche tous les conteneurs en cours d’exécution.

  • docker logs [CONTAINER_ID]

    : Affiche les logs d’un conteneur spécifique.

Exercices

  1. Lancer plusieurs conteneurs et utiliser
    docker ps

    pour lister les conteneurs actifs.

  2. Utiliser
    docker stats

    pour surveiller l’utilisation des ressources par les conteneurs en cours d’exécution.

Gestion des données persistantes dans les conteneurs

La gestion des données persistantes est cruciale pour les applications qui nécessitent le stockage d’état, comme les bases de données. Docker utilise des volumes, des bind mounts, et des tmpfs mounts pour gérer les données persistantes.

Exemples

  • Volumes: Recommandés par Docker pour la persistance des données, car ils sont gérés entièrement par Docker et peuvent être utilisés par plusieurs conteneurs.
  • Bind Mounts: Permettent de mapper un répertoire sur l’hôte à un répertoire dans le conteneur, utile pour le développement.

Exercices

  1. Créer un volume Docker et l’attacher à un conteneur pour persister les données d’une application.
  2. Utiliser un bind mount pour développer une application en local tout en la faisant tourner dans un conteneur, permettant de voir les modifications en temps réel sans reconstruire le conteneur.

Ces sections couvrent les bases de la gestion des conteneurs Docker, y compris leur création, exécution, surveillance, et la gestion des données. Maîtriser ces compétences est essentiel pour utiliser efficacement Docker dans le développement et la production.

Convertir le modèle .pt en onnx

La conversion d’un modèle du format .pt de PyTorch au format ONNX implique quelques étapes, nécessitant généralement de charger le modèle PyTorch puis d’utiliser une fonction ou une méthode pour l’exporter vers ONNX.

Installez la bibliothèque Ultralytics YOLO

Assurez-vous que la bibliothèque Ultralytics YOLO est installée dans votre environnement Python. Cette bibliothèque fournit les outils et méthodes nécessaires pour travailler avec les modèles YOLO. Vous pouvez l’installer en utilisant pip si elle n’est pas déjà installée :

“`
pip install ultralytics

“`

Importer la classe YOLO

Commencez votre script en important la classe YOLO du paquet ultralytics. Cette classe est conçue pour gérer les modèles YOLO, y compris leur chargement et leur exportation.

“`
from ultralytics import YOLO

“`

Charger votre modèle PyTorch personnalisé

Utilisez la classe YOLO pour charger votre modèle entraîné personnalisé. Vous devez spécifier le chemin d’accès à votre fichier de modèle .pt. Ce fichier doit contenir les poids entraînés et l’architecture du modèle. L’exemple utilise “best.pt”, en supposant qu’il s’agit du nom de votre fichier de modèle.

“`
model = YOLO(‘best.pt’) # load a custom trained model

“`

Exporter le modèle au format ONNX

 

Une fois le modèle chargé, vous pouvez l’exporter au format ONNX en utilisant la méthode d’exportation. Spécifiez le format ‘onnx’ dans l’appel de la méthode. Cela créera un fichier ONNX dans le répertoire de travail actuel ou dans le chemin spécifié (si vous en fournissez un).

 

“`
model.export(format=’onnx’)
“`

Vérifier le fichier modèle ONNX

Après avoir exécuté le script, vous devriez trouver un fichier de modèle ONNX dans votre répertoire de travail. Le nom du fichier sera généralement dérivé du nom de votre fichier .pt original, mais avec une extension .onnx.

Détection d’Objets en Temps Réel avec YOLOv8 sur Plusieurs Caméras et OpenCV

Détection d’Objets en Temps Réel avec YOLOv8 sur Plusieurs Caméras et OpenCV

La détection d’objets en temps réel, utilisant le modèle YOLOv8 via la bibliothèque OpenCV. Ce script illustre comment YOLOv8, une évolution du populaire modèle YOLO pour la détection d’objets, peut être appliqué aux flux vidéo de deux caméras simultanément, offrant une solution puissante et flexible pour la surveillance et l’analyse vidéo en temps réel.

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO(‘yolov8n.pt’)

# Open the video file
video_path = “path/to/your/video/file.mp4”
cap = cv2.VideoCapture(0)

# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()

if success:
# Run YOLOv8 inference on the frame
results = model(frame)

# Visualize the results on the frame
annotated_frame = results[0].plot()

# Display the annotated frame
cv2.imshow(“YOLOv8 Inference”, annotated_frame)

# Break the loop if ‘q’ is pressed
if cv2.waitKey(1) & 0xFF == ord(“q”):
break
else:
# Break the loop if the end of the video is reached
break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

 

Initialisation et Configuration

Le script commence par importer les bibliothèques nécessaires, notamment

cv2

pour OpenCV, qui est essentiel pour la capture et le traitement des images vidéo, et

YOLO

du module

ultralytics

, qui est spécialement conçu pour charger et utiliser les modèles YOLO, y compris YOLOv8.

Chargement du Modèle YOLOv8

Le modèle YOLOv8 est chargé à partir d’un fichier pré-entraîné (

'yolov8n.pt'

), indiquant une version nano de YOLOv8 qui est optimisée pour une utilisation rapide avec une empreinte mémoire réduite, tout en maintenant une précision raisonnable pour la détection d’objets.

Configuration des Caméras

Deux objets

VideoCapture

sont initialisés pour les caméras aux indices

0

et

2

, correspondant à deux caméras distinctes connectées au système. Le script vérifie si chaque caméra est correctement ouverte, affichant un message d’erreur si une caméra ne peut pas être initialisée.

Boucle de Traitement des Images

Dans une boucle continue, le script lit une image de chaque flux vidéo. Si les deux images sont capturées avec succès, le script applique le modèle YOLOv8 à chaque image pour détecter les objets présents.

Rendu et Affichage des Résultats

Pour chaque image, le script extrait les résultats de la détection et utilise la méthode

plot()

sur le premier objet de résultats pour obtenir une image annotée avec des cadres de délimitation et des étiquettes pour chaque objet détecté. Ces images annotées sont ensuite concaténées horizontalement pour fournir une vue combinée des deux caméras, qui est affichée à l’écran.

Fin de la Session

La boucle se termine lorsque l’utilisateur appuie sur la touche ‘q’, ce qui entraîne la libération des ressources de la caméra et la fermeture des fenêtres d’affichage, clôturant proprement l’application.

Ce script met en évidence la capacité de YOLOv8 à fournir des détections d’objets rapides et précises dans des applications de surveillance en temps réel. L’utilisation de YOLOv8 dans ce contexte illustre non seulement les progrès dans les algorithmes de détection d’objets mais aussi comment ces technologies peuvent être intégrées avec des bibliothèques de traitement d’images comme OpenCV pour créer des systèmes de surveillance sophistiqués capables d’analyser simultanément les flux vidéo de plusieurs sources.

Détection d’Objets en Temps Réel avec YOLOv5 sur Plusieurs Caméras et OpenCV

Détection d’Objets en Temps Réel avec YOLOv5 sur Plusieurs Caméras et OpenCV

Une application pratique de la détection d’objets en temps réel en utilisant le modèle de deep learning YOLOv5 en combinaison avec OpenCV, une bibliothèque populaire pour le traitement d’images et de vidéos. Cette synergie permet de surveiller et d’analyser les flux vidéo de plusieurs caméras simultanément, offrant ainsi une solution robuste pour des applications telles que la surveillance de sécurité, le suivi du trafic ou même des études comportementales en temps réel. Voici une explication détaillée du fonctionnement du script :

 

import cv2
import torch

# Charger le modèle YOLOv5
model = torch.hub.load(‘ultralytics/yolov5’, ‘yolov5x’, pretrained=True)

camera1 = cv2.VideoCapture(0)
camera2 = cv2.VideoCapture(4)

if not camera1.isOpened():
print(‘Erreur …cam1’)

if not camera2.isOpened():
print(‘Erreur.. cam2’)

while True:
ret1, frame1 = camera1.read()
ret2, frame2 = camera2.read()

if ret1 and ret2:
# Appliquer YOLOv5 aux deux images
results1 = model(frame1)
results2 = model(frame2)

# Récupérer les images avec les détections
frame1 = results1.render()[0]
frame2 = results2.render()[0]

# Concaténer les images pour l’affichage
frame = cv2.hconcat([frame1, frame2])
cv2.imshow(“Cameras”, frame)

if cv2.waitKey(1) & 0xFF == ord(‘q’):
break

camera1.release()
camera2.release()
cv2.destroyAllWindows()

 

  1. Importation des bibliothèques nécessaires : Le script commence par importer cv2 (OpenCV) pour la capture vidéo et le traitement d’images, ainsi que torch, une bibliothèque de machine learning qui permet de charger et d’utiliser le modèle YOLOv5.
  2. Chargement du modèle YOLOv5 : Le modèle YOLOv5 est chargé depuis le dépôt ultralytics sur GitHub grâce à la fonction
    torch.hub.load

    , en spécifiant ‘yolov5x’ comme modèle pré-entraîné. ‘yolov5x’ est l’une des versions de YOLOv5, connue pour sa précision élevée, bien qu’elle soit plus gourmande en ressources que ses variantes plus petites.

  3. Initialisation des caméras : Deux objets
    VideoCapture

    sont créés pour les deux caméras.

    cv2.VideoCapture(0)

    et

    cv2.VideoCapture(4)

    sont utilisés pour initialiser la première et la deuxième caméra, respectivement. Les indices des caméras (0 et 4 dans ce cas) dépendent de l’ordre dans lequel les caméras sont reconnues par le système.

  4. Vérification de l’ouverture des caméras : Le script vérifie si chaque caméra a été correctement initialisée. Si une caméra ne peut pas être ouverte, un message d’erreur est affiché.
  5. Boucle de traitement des images : Une boucle
    while True

    est utilisée pour lire les images de chaque caméra en continu.

    camera.read()

    renvoie un booléen qui indique si la lecture a été réussie (

    ret

    ) et l’image capturée (

    frame

    ).

  6. Application de YOLOv5 aux images : Pour chaque image capturée, le modèle YOLOv5 est appliqué via
    model(frame)

    . Cela permet de détecter les objets dans l’image et de renvoyer les résultats, qui incluent les cadres de délimitation, les classes d’objets et les scores de confiance.

  7. Rendu des détections : Les résultats de la détection sont rendus sur les images originales avec
    results.render()

    , qui superpose les cadres de délimitation et les étiquettes d’identification sur les objets détectés.

  8. Affichage des images : Les images traitées de chaque caméra sont concaténées horizontalement avec
    cv2.hconcat

    et affichées dans une fenêtre nommée “Cameras”.

  9. Sortie de la boucle : La boucle peut être interrompue par l’utilisateur en appuyant sur la touche ‘q’, permettant ainsi de fermer proprement les flux vidéo et de détruire toutes les fenêtres OpenCV ouvertes.

Ce script démontre la puissance et la flexibilité de combiner YOLOv5 et OpenCV pour la détection d’objets en temps réel sur plusieurs sources vidéo. L’application de telles technologies ouvre des horizons vastes pour des applications allant de la surveillance de sécurité avancée à des solutions innovantes dans le domaine de la recherche et au-delà.

Reconstruction 3D et Stéréoscopie avec OpenCV

OpenCV est une bibliothèque open-source largement utilisée pour le traitement d’images et la vision par ordinateur. Elle offre un large éventail de fonctions pour la reconstruction 3D et la stéréoscopie.

Stéréoscopie

La stéréoscopie est une technique permettant de créer une illusion de profondeur en combinant deux images prises à partir de points de vue légèrement différents. OpenCV propose plusieurs fonctions pour la stéréoscopie, notamment :

  • Calibrage de la caméra: Cette étape est nécessaire pour déterminer les paramètres intrinsèques et extrinsèques des caméras utilisées pour capturer les images stéréo.
  • Correspondance stéréo: Cette étape consiste à trouver les correspondances entre les pixels des deux images stéréo.
  • Triangulation: Cette étape consiste à calculer les coordonnées 3D des points correspondants.

Reconstruction 3D

La reconstruction 3D est le processus de création d’un modèle 3D à partir d’images 2D. OpenCV propose plusieurs fonctions pour la reconstruction 3D, notamment :

  • Nuage de points: Un nuage de points est un ensemble de points 3D qui représentent la surface d’un objet.
  • Maillage: Un maillage est une collection de triangles qui connectent les points d’un nuage de points.
  • Texture: La texture est une image qui est appliquée à la surface d’un maillage pour lui donner un aspect réaliste.

Exemple d’utilisation:

OpenCV peut être utilisé pour reconstruire un modèle 3D d’un objet à partir de deux images stéréo. La première étape consiste à calibrer les caméras et à trouver les correspondances entre les pixels des deux images. Ensuite, les coordonnées 3D des points correspondants peuvent être calculées par triangulation. Enfin, un nuage de points, un maillage et une texture peuvent être générés à partir des coordonnées 3D.

Ressources supplémentaires:

N’hésitez pas à me poser des questions si vous avez besoin de plus d’informations.


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17