Détection d’Objets en Temps Réel avec YOLOv8 sur Plusieurs Caméras et OpenCV

Détection d’Objets en Temps Réel avec YOLOv8 sur Plusieurs Caméras et OpenCV

La détection d’objets en temps réel, utilisant le modèle YOLOv8 via la bibliothèque OpenCV. Ce script illustre comment YOLOv8, une évolution du populaire modèle YOLO pour la détection d’objets, peut être appliqué aux flux vidéo de deux caméras simultanément, offrant une solution puissante et flexible pour la surveillance et l’analyse vidéo en temps réel.

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO(‘yolov8n.pt’)

# Open the video file
video_path = “path/to/your/video/file.mp4”
cap = cv2.VideoCapture(0)

# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()

if success:
# Run YOLOv8 inference on the frame
results = model(frame)

# Visualize the results on the frame
annotated_frame = results[0].plot()

# Display the annotated frame
cv2.imshow(“YOLOv8 Inference”, annotated_frame)

# Break the loop if ‘q’ is pressed
if cv2.waitKey(1) & 0xFF == ord(“q”):
break
else:
# Break the loop if the end of the video is reached
break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

 

Initialisation et Configuration

Le script commence par importer les bibliothèques nécessaires, notamment

cv2

pour OpenCV, qui est essentiel pour la capture et le traitement des images vidéo, et

YOLO

du module

ultralytics

, qui est spécialement conçu pour charger et utiliser les modèles YOLO, y compris YOLOv8.

Chargement du Modèle YOLOv8

Le modèle YOLOv8 est chargé à partir d’un fichier pré-entraîné (

'yolov8n.pt'

), indiquant une version nano de YOLOv8 qui est optimisée pour une utilisation rapide avec une empreinte mémoire réduite, tout en maintenant une précision raisonnable pour la détection d’objets.

Configuration des Caméras

Deux objets

VideoCapture

sont initialisés pour les caméras aux indices

0

et

2

, correspondant à deux caméras distinctes connectées au système. Le script vérifie si chaque caméra est correctement ouverte, affichant un message d’erreur si une caméra ne peut pas être initialisée.

Boucle de Traitement des Images

Dans une boucle continue, le script lit une image de chaque flux vidéo. Si les deux images sont capturées avec succès, le script applique le modèle YOLOv8 à chaque image pour détecter les objets présents.

Rendu et Affichage des Résultats

Pour chaque image, le script extrait les résultats de la détection et utilise la méthode

plot()

sur le premier objet de résultats pour obtenir une image annotée avec des cadres de délimitation et des étiquettes pour chaque objet détecté. Ces images annotées sont ensuite concaténées horizontalement pour fournir une vue combinée des deux caméras, qui est affichée à l’écran.

Fin de la Session

La boucle se termine lorsque l’utilisateur appuie sur la touche ‘q’, ce qui entraîne la libération des ressources de la caméra et la fermeture des fenêtres d’affichage, clôturant proprement l’application.

Ce script met en évidence la capacité de YOLOv8 à fournir des détections d’objets rapides et précises dans des applications de surveillance en temps réel. L’utilisation de YOLOv8 dans ce contexte illustre non seulement les progrès dans les algorithmes de détection d’objets mais aussi comment ces technologies peuvent être intégrées avec des bibliothèques de traitement d’images comme OpenCV pour créer des systèmes de surveillance sophistiqués capables d’analyser simultanément les flux vidéo de plusieurs sources.

Please follow and like us:
Pin Share

Laisser un commentaire