Detection d’objet avec yolov5

Detection d’objet avec yolov5

Découvrez yolov5 et la détection d’objet ===

La détection d’objet est une technologie qui a profondément révolutionné la surveillance et la sécurité dans les domaines de l’industrie, de la santé, de l’automobile et de la sécurité publique. Yolov5 est l’une des technologies de détection d’objet les plus puissantes et les plus récentes disponibles sur le marché. Dans cet article, nous allons explorer les avantages, les applications, les défis et les limites de cette technologie, ainsi que son avenir dans le domaine de la reconnaissance visuelle.

Comment yolov5 détecte-t-il les objets ?

Yolov5 utilise un réseau de neurones convolutionnels pour détecter les objets dans une image. Le réseau est entraîné sur de grandes quantités de données d’image pour apprendre à reconnaître les caractéristiques des différents objets. Le réseau divise ensuite l’image en grilles et calcule les probabilités de présence d’un objet dans chacune de ces grilles. Ensuite, il détermine les boîtes de délimitation qui entourent l’objet et calcule les probabilités de chaque catégorie d’objet.

Les avantages de yolov5 pour la détection d’objet

Les avantages de yolov5 pour la détection d’objet sont nombreux. Tout d’abord, il est extrêmement rapide et précis, ce qui le rend idéal pour les applications en temps réel telles que la surveillance vidéo et la conduite autonome. De plus, il peut détecter plusieurs objets dans une seule image, ce qui est utile pour la surveillance de zones à forte densité de population, comme les stades et les gares. Enfin, yolov5 est très flexible et peut être utilisé pour détecter une grande variété d’objets, de la nourriture aux voitures en passant par les personnes.

Yolov5 : une technologie en constante évolution

La technologie yolov5 est en constante évolution. Des mises à jour sont régulièrement publiées pour améliorer la précision et la vitesse de la détection d’objet. En outre, de nouveaux ensembles de données sont constamment ajoutés pour permettre à la technologie de reconnaître de nouveaux types d’objets.

Comment entraîner yolov5 pour la détection d’objet

Pour entraîner yolov5, il faut d’abord collecter des données d’image et les annoter avec des boîtes de délimitation pour chaque objet. Ensuite, ces données doivent être transformées en un format compréhensible pour yolov5, puis le réseau doit être entraîné sur ces données à l’aide d’une carte graphique puissante.

Les différentes applications de yolov5

Les applications de yolov5 sont nombreuses et diverses. Les domaines de la surveillance, de la sécurité publique et de la conduite autonome font partie des domaines d’application les plus prometteurs. La reconnaissance et l’analyse d’images médicales sont également des domaines où yolov5 peut être utile. Enfin, la détection de la nourriture et la reconnaissance d’objet pour les robots de livraison sont des applications en pleine croissance.

Yolov5 : la solution pour la sécurité et la surveillance

Yolov5 est particulièrement adapté à la sécurité et à la surveillance, car il peut détecter rapidement et précisément les objets dans une image en temps réel. Il peut être utilisé pour la surveillance de zones à forte densité de population, la détection d’activités suspectes et la reconnaissance de plaques d’immatriculation.

Les challenges de la détection d’objet avec yolov5

La détection d’objet avec yolov5 peut rencontrer des challenges tels que la détection d’objets de petite taille ou la reconnaissance d’objets très similaires. Il peut également y avoir des problèmes avec l’occlusion, lorsque les objets sont partiellement bloqués par d’autres objets.

Les limites de yolov5 dans la détection d’objet

Bien que yolov5 soit une technologie de pointe pour la détection d’objet, il y a des limites à ce qu’il peut faire. Par exemple, il peut avoir des difficultés à reconnaître les objets dans des conditions de faible luminosité ou lorsque les objets sont flous. Il peut également ne pas être en mesure de détecter des objets très petits ou très éloignés.

Yolov5 vs les autres technologies de détection d’objet

Yolov5 est souvent comparé à d’autres technologies de détection d’objet telles que Faster R-CNN et Mask R-CNN. Bien que ces technologies soient également très puissantes, yolov5 se distingue par sa vitesse et sa flexibilité. Il est également capable de détecter plusieurs objets dans une seule image.

Yolov5 et l’avenir de la reconnaissance visuelle

Yolov5 représente l’avenir de la reconnaissance visuelle, avec des avancées régulières en termes de précision et de vitesse. À l’avenir, il sera probablement utilisé dans de nombreux domaines, y compris la sécurité, la médecine, l’automobile, et la robotique.

Yolov5 : la clé pour une reconnaissance d’objet rapide et précise ===

En conclusion, yolov5 est une technologie de pointe pour la détection d’objet qui présente de nombreux avantages pour la surveillance, la sécurité publique et la conduite autonome. Bien que des challenges et des limites existent, yolov5 reste une solution impressionnante pour la reconnaissance visuelle. Nous pouvons nous attendre à ce que yolov5 continue d’évoluer et de s’améliorer dans les années à venir, ouvrant ainsi la voie à de nouvelles applications passionnantes.

Outils d’annotation des images

Avant de procéder à l’entrainement d’un modèle basé sur les réseaux de neurones (cas de détection, classification et segmentation), il est important d’annoter les objets afin de permettre au modèle de reconnaître les objets plus tard et faire la prédiction. Pour faciliter le travail d’annotation, plusieurs outils existent déjà en version gratuite et payante. Je vous présente ici une liste non exhaustive dans le cas de l’annotation des images.

 

  • labelImg : LabelImg est un outil d’annotation d’image graphique et des boîtes de délimitation d’objets d’étiquette dans les images
  • Roboflow . En plus de l’annotation, la plate-forme facilite la conversion entre les formats d’annotation et la gestion des ensembles de données, ainsi que la formation et le déploiement de modèles personnalisés sur des points de terminaison d’API privés
  • CVAT – Outil d’annotation de vision par ordinateur puissant et efficace
  • labelme – Annotation polygonale d’image avec Python
  • VoTT – Un outil d’annotation et d’étiquetage open source pour les images et les vidéos
  • imglab – Un outil basé sur le Web pour étiqueter les images des objets qui peuvent être utilisés pour former dlib ou d’autres détecteurs d’objets
  • Yolo_mark – GUI pour marquer des boîtes délimitées d’objets dans des images pour former le réseau de neurones Yolo v3 et v2
  • PixelAnnotationTool – Logiciel qui vous permet d’annoter manuellement et rapidement des images dans des répertoires
  • OpenLabeling – Étiquetez des images et des vidéos pour les applications de vision par ordinateur
  • imagetagger – Une plateforme en ligne open source pour l’étiquetage collaboratif d’images
  • Alturos.ImageAnnotation – Un outil collaboratif pour étiqueter les données d’image
  • deeplabel – Un outil d’annotation d’images multiplateforme pour l’apprentissage automatique
  • MedTagger – Un cadre collaboratif pour annoter des ensembles de données médicales à l’aide du crowdsourcing.

Pour avoir plus de détails et d’autres outils d’annotation pour (les videos, le texte, l’audio et autres ..etc…) aller sur https://github.com/heartexlabs/awesome-data-labeling

Augmentation des données ou data augmentation

 

Qu’est-ce que l’augmentation d’image?

Afin d’augmenter la performance des algorithmes basés sur les réseaux de neurones, on applique souvent les méthodes d’augmentation des données. Selon Wikipédia (https://en.wikipedia.org/wiki/Data_augmentation), l’augmentation des données dans l’analyse des données sont des techniques utilisées pour augmenter la quantité de données en ajoutant des copies légèrement modifiées de données déjà existantes ou de données synthétiques nouvellement créées à partir de données existantes. Pour ce qui concerne la détection d’objets, l’augmentation de données permet d’optimiser la performance et la robustesse des détections.

Les algorithmes basés sur les réseaux de neurones profonds nécessitent beaucoup de données d’entraînement pour obtenir de bons résultats et éviter le surajustement. Cependant, il est souvent très difficile d’obtenir suffisamment d’échantillons d’apprentissage.

L’augmentation d’image  peut être défini comme un processus de création de nouveaux exemples de formation à partir d’exemples existants.

Parmi les méthodes d’augmentation de données pour la détection des objets, il y a deux types  de transformation (Transformations au niveau du pixel et Transformations au niveau spatial)

  1. Transformations au niveau du pixel

Les transformations au niveau du pixel ne changeront qu’une image d’entrée et laisseront inchangées toutes les cibles supplémentaires telles que les masques, les cadres de délimitation et les points clés. Voici quelques transformations au niveau du pixel :

Pour avoir plus de détail voir (https://github.com/albumentations-team/albumentations)

On peut également modifier la luminosité de l’image. L’augmentation de la luminosité de l’image implique l’augmentation ou la diminution aléatoire d’une image, comme l’application d’un changement de pourcentage +/- uniforme à tous les pixels d’une image. On peut appliquer le changement de teinte en changeant l’espace colorimétrique( la couleur de l’image). L’augmentation de la teinte de l’image modifie de manière aléatoire les couleurs d’une image, rendant ainsi un modèle plus résistant aux couleurs spécifiques des objets.

  2.Transformations au niveau spatial

Les transformations au niveau spatial modifieront simultanément une image d’entrée ainsi que des cibles supplémentaires telles que des masques, des cadres de délimitation et des points clés. Voici quelques transformations au niveau spatial

La liste complète des transformations à appliquer sur les images pour augmenter les données  est accessible via leur documentation en ligne via ()le lien suivant.

 

Algorithmes de détection d’objets

Quels sont les algorithmes de détection d’objets par les réseaux de neurones?

En général, les détecteurs d’objets basés sur l’apprentissage en profondeur extraient des caractéristiques de l’image ou de l’image vidéo d’entrée. Un détecteur d’objets résout deux tâches successives :

  • Tâche n° 1 : trouver un nombre arbitraire d’objets (peut-être même zéro), et
  • Tâche n° 2 : classer chaque objet et estimer sa taille à l’aide d’un cadre de sélection.

En fonction de l’étude menée ou du résultat attendu, on peut utiliser des algorithmes qui combinent les deux tâches ( algorithmes à une étage) ou utiliser des algorithmes qui font séparément les tâches ( algorithmes à deux étages). Voyons plus en détails les deux types d’algorithmes, leurs avantages et inconvénients.  

  1. Méthodes  ou algorithmes à une étage: les détecteurs à une étape prédisent simultanément la probabilité de la classe de sortie et la position exacte de l’objet à détecter. Ils combinent les deux tâches en une seule ce qui fait que le processus prend moins de temps  ce qui fait que ces algorithmes sont les plus utilisés dans la détection en temps réel. Ces  détecteurs d’objets à un étage donnent la priorité à la vitesse d’inférence et sont super rapides mais pas moins bons (moins précis) pour reconnaître des objets de forme irrégulière ou un groupe de petits objets. Parmi les détecteurs à un étage les plus populaires on a:  YOLO,  SSD ,  RetinaNet, HOG etc….
  2. Méthodes ou algorithmes à deux étages: les détecteurs d’objets à deux étages utilisent d’abord le réseau de suggestion régional ( RPN) pour générer des boîtes à suggestions régionales approximatives puis utilisent  une tête de détection dédiée pour classer les objets dans l’image. En d’autre terme,  une proposition de région d’objet avec des méthodes conventionnelles de vision par ordinateur ou des réseaux profonds, suivie d’ une classification d’objet basée sur des caractéristiques extraites de la région proposée avec une régression de boîte englobante. Les méthodes en deux étapes ou étages permettent d’obtenir la précision de détection la plus élevée, mais sont généralement plus lentes. Les détecteurs d’objets à deux étages trouvent d’abord une région d’intérêt et utilisent cette région recadrée pour la classification. Parmi les détecteurs à deux étages ou étapes les plus populaires on a: R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN etc…

Détection des objets

Détection des objets

Qu’est-ce que la détection d’objets ?

En vision par ordinateur ou computer vision,  la détection d’objets  est désignée par une méthode permettant de détecter la présence d’une instance ou d’une classe d’objets dans une image numérique[1] https://fr.wikipedia.org/wiki/D%C3%A9tection_d’objet.

Selon la terminologie usuelle on peut distinguer la détection, de la localisation et de la reconnaissance d’objets :

  • détection (ou classification) : présence d’une instance de l’objet dans l’image
  • reconnaissance : identification d’une instance particulière (« déchets  », « le visage d’une personne »…)
  • localisation (ou parfois détection) : situation précise de l’instance (détectée ou reconnue) dans l’image (cadre englobant ou segmentation de la zone).

Il est important de noter que pour des entités visuelles localisées (objet, visage, personne…), la détection et la localisation se confondent souvent.

La détection d’une classe d’objets est généralement considérée comme un problème plus difficile que la reconnaissance d’une instance particulière, puisqu’il faut identifier les caractéristiques communes à la classe en faisant abstraction de la variété des différentes instances au sein de ladite classe.

Approche générale

La détection d’un objet dans une image se décompose souvent en trois étapes qui sont:

Les méthodes utilisées pour faire la détection d’objets sont subdivisées en deux grandes familles (les méthodes de seuillages d’images(1) ou les méthodes utilisant l’intelligence artificielle (2) le machine learning ou le deep learning), chacune a ses avantages et inconvénients que nous allons décrire plus bas. 

1- Technique ou méthode de seuillage d’images: ne nécessitent généralement pas de données historiques(données pour faire un entrainement) pour la formation et ne sont pas supervisées par nature. La méthode de seuillage choisie est appliquée directement sur l’image ce qui permet d’avoir une segmentation binaire( segmentation en deux classes) avec une des deux classes représentant l’objet à identifier ou à détecter.

  • Avantages: ces tâches ne nécessitent pas d’ images annotées , où les humains étiquettent les données manuellement (pour une formation supervisée).
  • Inconvénients : ces techniques sont limitées à plusieurs facteurs, tels que les scénarios complexes (sans arrière-plan unicolore), l’occlusion (objets partiellement masqués), l’éclairage et les ombres, et l’effet de fouillis. Ces techniques ne peuvent pas être appliquées sur des images avec plusieurs variations d’éclairage ou d’arrière-plan.

2-Les méthodes d’intelligence artificielle ( machine learning ou le deep learning): reposent généralement sur une formation supervisée . Les performances sont limitées par la puissance de calcul  des GPU en fonction de la machine utilisée et des données(images).

  • Avantages : La détection d’objets d’apprentissage en profondeur ou par les techniques de l’intelligence artificielle est beaucoup plus robuste à l’occlusion, aux scènes complexes et à l’éclairage difficile.
  • Inconvénients : une énorme quantité de données (dans notre  cas images) d’entraînement est nécessaire pour avoir une bonne performance. Pour ce qui de vitesse de du modèle entraîné, il faut une machine avec un bon processeur (GPU) et une mémoire Ram avec une capacité assez élevée et  le processus d’ annotation d’images est laborieux et coûteux. Toutefois, il faut noter qu’il existe déjà des ensemble de données( datasets existants) permettant de faciliter la tâche si l’objet ou les objets à détecter est déjà présent dans une des classes des datasets existants.

1 2 3 4 5